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Types of thermal analysis

Semi Adiabatic Specific Heat

DTA differential thermal analysis (rt to 1650 °C)
DSC Differential Scanning Calorimetry (rt to 750 °C)
Heat flux DSC (rt to 1650 °C), (-150 to 900 °C)

TGA thermal gravimetric analysis (rt — 1500 °C)

STA simultaneous thermal analysis (rt — 1500 °C)

TMA
— thermo mechanical analysis
— Thermo magnetic analysis
Dilatometry ( thermal expansion )
— (rt to 1650 °C), (-150 to 900 °C)
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Differential Thermal Analysis
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Differential Heat Flux Calorimeter
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Figure 2.1. Schematic of DTA and HF-DSC geometries (not to scale). A and
B denote the different legs of themocouples.
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Figure 2.2. DTA melting of a 211.6 mg of pure Ag at 10 K/min. (a) Reference
thermocouple temperature T, and sample thermocouple temperature
T, vs_time. (b) Differential signal AT = T, - T,/ vs. time (ved),
vs. sample temperature (solid black), and vs. reference temperature (dashed
black). For this data, the reference temperature remains quite linear in time
as the sample melts, so that a linear scaling of the time axis makes the plots
with x-axes of time and reference temperature practically identical.
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Figure 2.5. Schematic a) enthalpy vs. temperature for a pure metal;

b) corresponding derivative dH ¢ (1g)/dTg curve; ¢) DTA signal for melting
(bottom) and freezing (top). The small difference in heat capacity of liquid
and solid leads to a small offset of the baseline before and after melting. The
onsets in the DTA curves are shown with a small deviation from the melting
point, Ty, due to heat flow limitation in the DTA. This difference on melting

is adjusted to zero by the calibration procedure, at least for one heating rate.
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Figure 2.3. Effect of sample mass on DTA signal for pure Ag. The reference
mass was held constant. Heating rate is 10 K/min.
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Phase transition
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From Wikipedia,


http://upload.wikimedia.org/wikipedia/commons/9/97/Phase_change_-pn.png

Phase Transition

At phase-transition
point
— the two phases have

identical free
energies

— equally likely to exist.

Below the phase-
transition point
— Low temperature

phase is more stable
state of the two.

Above the phase-
transition point
— High temperature

phase is more stable
state of the two.

Free Energy
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Types of phase transitions

* first-order phase transitions

— involve a latent heat

 system either absorbs or releases a fixed (and typically
large) amount of energy.

* the temperature of the system will stay constant as
heat is added or released.

— "mixed-phase regimes”

* in which some parts of the system have completed the
transition and others have not.

— a pot of boiling water:
» turbulent mixture of water and water vapor bubbles.



Ehrenfest's classification of phase
transitions

phase transitions labeled by the lowest derivative of the free
energy that is discontinuous at the transition.

First-order phase transitions

— exhibit a discontinuity in the first derivative of the free energy with a
thermodynamic variable.
— solid/liquid/gas transitions are first-order transitions
* because they involve a discontinuous change in density (which is the first
derivative of the free energy with respect to chemical potential.)
Second-order phase transitions
— continuous in the first derivative

— exhibit discontinuity in a second derivative of the free energy.

* example, the ferromagnetic phase transition in materials such as Fe,

— magnetization ( the first derivative of the free energy with the applied magnetic field
strength), increases continuously from zero as the temperature is lowered below Tc

— magnetic susceptibility (the second derivative of the free energy with the field) changes
discontinuously.



International Union of Pure and Applied Chemistry.

first-order phase transition

A transition in which the molar Gibbs energies or molar Helmholtz energies
of the two phases (or chemical potentials of all components in the two
phases) are equal at the transition temperature, but their first derivatives
with respect to temperature and pressure (for example, specific enthalpy
of transition and specific volume) are discontinuous at the transition point,
as for two dissimilar phases that coexist and that can be transformed into
one another by a change in a field variable such as pressure, temperature,
magnetic or electric field.

Example:

The transition on heating CsCl to 752 K at which it changes from the
low-temperature, CsCl-type structure to the high-temperature NaCl-type
structure.

Synonymous with discontinuous phase transition.

1994, 66, 583

IUPAC Compendium of Chemical Terminology 2nd Edition (1997)



second-order transition

A transition in which a crystal structure
undergoes a continuous change and in which
the first derivatives of the Gibbs energies (or
chemical potentials) are continuous but the
second derivatives with respect to
temperature and pressure (i.e. heat capacity,
thermal expansion, compressibility) are
discontinuous. Example: The order-disorder
transition in metal alloys, for example, CuZn.
Synonymous with continuous transition.



http://goldbook.iupac.org/H02753.html
http://goldbook.iupac.org/O04321.html
http://goldbook.iupac.org/O04321.html
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NIST Recommended Practice Guide
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Terms and definitions

 ASTM E473, "Standard Terminology Relating to
Thermal Analysis," is a compilation of definitions
of terms used in other ASTM documents on all

thermal analysis methods including techniques
besides DTA and HF-DSC.

e ASTM E1142, "Terminology Relating to
Thermophysical Properties," is a compilation of

C
C
t

efinitions of terms used in other ASTM
ocuments that involve the measurement of

nermophysical properties in general.



ASTM Practice Standards

« ASTM E967, "Practice for Temperature Calibration of DSC and DTA,"
presents simple recipes for calibration for fixed mass and heating
rate using two pure materials to obtain a linear correction for
conversion of measured temperature to actual temperature. The
onset temperature extracted from the melting peak is determined
by the extrapolation method, see section 2.4.3. For some 4DTA and
Heat-flux DSC Measurements 5 materials the standard suggests
using the peak for calibration, a method not recommended for
metals.

e ASTM E968, "Standard Practice for Heat Flow Calibration of DSC,"
uses sapphire as heat capacity standard. The method is described in
section 2.4.4.

« ASTM E2253, "Standard Method for Enthalpy Measurement
Validation of Differential Scanning Calorimeters," presents a
method using three small masses to determine the detection limit
of DTA/DSC.



ASTM Practice Standards

ASTM E928, "Standard Test Method for Determining Purity by DSC,”
employs comparison of the shape of the melting peak of an impure
sample to the shape for a high purity sample to determine the
concentration of the impurity. The method uses the "1/F plot"
which examines the down slope of the melting peak.

ASTM E794, "Standard Test Method for Melting and Crystallization
Temperatures by Thermal Analysis," employs the extrapolated
onset determination method.

ASTM E793, "Standard Test Method for Enthalpies of Fusion and
Crystallization by DSC," uses area on signal vs. time plot for
comparison to known heats of fusion of pure materials.

ASTM E1269, "Standard Test Method for Determining Specific Heat
Capacity by DSC," uses sapphire or aluminum as a standard.



